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Abstract

We study non-trivial firing patterns in small assemblies of pulse-coupled oscillatory maps. We find conditions for the
existence of waves in rings of coupled maps that are coupled bi-directionally. We also find conditions for stable synchrony in
general all-to-all coupled oscillators. Surprisingly, we find that for maps that are derived from physiological data, the stability
of synchrony depends on the number of oscillators. We describe rotating waves in two-dimensional lattices of maps and
reduce their existence to a reduced system of algebraic equations which are solved numerically. © 2002 Published by Elsevier
Science B.V.
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1. Introduction

There have been many recent investigations of the behavior of coupled networks of neural oscillators. A large body
of experimental data indicates that brief periods of oscillatory activity may be required for certain cognitive functions
(see [12] for references). Many theoretical approaches have been applied to the general question of synchrony and
phase-locking [3,19,29]. These include restriction of the models to simple neurons like integrate-and-fire [2,20,27],
weak coupling [8,15,18], and simple topologies [5,6]. In many of these papers, the coupling is pulse-like lasting only
briefly relative to the length of the cycle. In this paper, we focus on the behavior of such pulse-coupled oscillators
motivated by the fact that the coupling between neurons is often through rapidly decaying synapses.

When a stable oscillator is briefly perturbed by a sufficiently small stimulus, then, the phase of the oscillator is
shifted by an amount that depends on the timing of the perturbation [17,29]. The change in phase of the oscillator is
called the phase-response curve (PRC). PRCs are popular among experimentalists as they provide a way to quantify
the behavior of the system without knowing the underlying mechanisms responsible for the behavior. Indeed, PRCs
have been computed for many biological oscillators [4,29] including neurons [23–26]. Stoop et al. [26] have used
experimental PRCs to devise coupled map lattices for arrays of nearest neighbor coupled neurons. Canavier and
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colleagues have taken a different approach and analyzed rings of uni-directionally coupled PRCs without forcing.
Our approach is similar but not restricted to uni-directional coupling.

We first define PRCs and then derive a set of discontinuous differential equations representing the phases of
the respective oscillators. We then derive a map which describes the timing difference for a single periodically
forced PRC and for a pair of coupled PRCs. We generalize this to a map forN globally coupled oscillators and
prove a stability result. Surprisingly, the stability depends on the number of oscillators. We then turn to a ring
of nearest neighbor coupled PRCs and derive conditions for the existence of traveling waves as well as their
stability. We numerically simulate the ring and a line of coupled PRCs to show the differences. Finally, we consider
two-dimensional arrays of nearest neighbor coupled PRCs and show the existence of (apparently numerically stable)
rotating waves.

2. Phase-response curves and coupled phase models

2.1. Defining the PRC

Suppose that a system has a stable limit cycle solution and that we are only interested in a particular event within
that system. For example, we might only be interested in the times at which a given neuron fires an action potential.
At some fixed time after a spike, we briefly perturb the system (e.g., we inject a current pulse into the neuron). This
perturbation changes the time of the next spike. The change in timing is the PRC and it is a function of the magnitude
and the timing of the perturbation. LetT be the natural period of the oscillation and lett = 0, T ,2T , . . . be the times
of successive events. Suppose that att = ts ∈ [0, T ), we perturb the trajectory. Then, the new firing time isT̂ (ts).
A major assumption of PRC theory is that the events that occur aftert = T̂ (ts) are att = T̂ (ts)+T , T̂ (ts)+2T , . . . .
This says that the effect of the perturbation is only carried for one cycle; there is no memory of the perturbation
once the event has occurred. This is a rather severe restriction, but, in practice, it often holds. (However, in [23],
there is a small change in the next spike time due to the presence of a slow potassium current. That is, the second
spike after the stimulus occurs att < T̂ (ts)+T , but this difference is quite small compared to the initial phase-shift
due to the perturbation.) We define the PRC to be

∆(φ) ≡ 1 − T̂ (T φ)

T
, (1)

whereφ ≡ ts/T ∈ [0,1) is the phase. Thus,∆(φ) is positive (negative) if the effect of the stimulus is to advance
(retard) the time of the next event. Most neurons have PRCs that satisfy

∆(0) = lim
φ→1−

∆(φ) = 0.

This means that the spike time is unchanged if the perturbation arrives at the onset of the spike. The PRCs computed
for excitatory pyramidal neurons as well as inhibitory cortical neurons have this property. (An example of PRC
from [23] is shown in Fig. 3; Fig. 1 in [26] shows PRCs for both excitatory and inhibitory perturbations.)

2.2. Some exactly computable PRCs

In this section, we briefly describe PRCs for several classical model oscillators which have appeared in the
literature. The first example is the well-known integrate-and-fire model:

dV

dt
= −V + I



P. Goel, B. Ermentrout / Physica D 163 (2002) 191–216 193

with V (t+) = 0 whenV (t−) = 1. We assume thatI > 1 so that this oscillates with a period of

T = − ln
I − 1

I
.

At t = ts , we add an amounta toV and then ask when the oscillator will fire next. If thets is close enough tot = T

then the perturbationa will lift V past 1 and the oscillator will fire immediately so thatT̂ (ts) = ts . Otherwise, an
elementary calculation shows that

T̂ (ts) = − ln
I − 1

I − a ets
.

Fig. 1a shows the PRC for the integrate-and-fire model forI = 1.05 and various values ofa. Fora > 0, the PRC
never satisfies∆(0) = 0 and fora < 0 it satisfies neither the condition that∆(0) = 0 nor∆(1) = 0.

Another version of the integrate-and-fire model is the “quadratic” integrate-and-fire equation:

dx

dt
= I + x2

with firing defined atx(t) → ∞ after whichx is reset to−∞. The period is just

T =
∫ ∞

−∞
dx

I + x2
= π√

I
.

This model arises as the normal form for a limit cycle near a saddle-node (see [9,16]). As above, we assume that at
t = ts a perturbation of sizea is given. Then, an elementary calculation (see, e.g. [16]) shows that

T̂ (ts) = ts + 1√
I

(
π

2
− arctan

[
a√
I

− cot(
√
I ts)

])
.

In Fig. 1b, we show the PRC forI = 1 and various values ofa. Unlike the integrate-and-fire model, the PRC for
this model vanishes at both 0 andT regardless of the strength of the perturbation. In this sense, it is a much “better”
representation of what a real neuron does.

As a final example, we take the classic radial isochron clock [11, p. 107], a two-dimensional system that is a
simplified normal form for any system near a Hopf bifurcation:

dr

dt
= Λr(1 − r2),

dθ

dt
= 1.

This is the polar form of the oscillator, soθ ∈ S1. Firing is defined asθ = 0 and perturbations are defined as shifts
in thex-coordinate of lengtha. The parameterΛ is assumed to be very large so that perturbations are immediately
brought back to the limit cycle along radii (see Fig. 2). In order for “phase” to be defined, we require that|a| < 1.
As above,ts is the time after firing that the pulse is given so that in the plane,(x, y) = ( costs , sints). After the
pulse, the coordinates are(a + costs , sints). The new angle,θ is obtained from trigonometry:

tanθ = sints

a + costs
,

thus

T̂ (ts) = ts + 2π − arctan

(
sints

a + costs

)
.
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Fig. 1. The PRCs for the integrate-and-fire model (a); the quadratic integrate-and-fire model (b) and the radial isochron clock (c).

Fig. 1c shows the PRC for the radial isochron clock. Unlike the other two models, for a given value ofa, the PRC
can both advance and delay the firing. Asa → 1 the PRC becomes singular. Note that no matter what the value of
a the PRC vanishes att = 0, T . For small values ofa, the radial isochron clock PRC has a particularly simple form

∆(φ) = − a

2π
sin 2πφ. (2)

We will use this form later on when we analyze coupling in lattices.
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Fig. 2. The effect of a perturbation on the radial isochron clock.

Cortical neuron PRCs that have been measured generally either strictly advance (for positive perturbations) or
delay (for negative perturbations) the phase. However, other neural PRCs can both advance and delay. (See, e.g. the
PRCs computed for the firefly,Pteroptyx malaccae[4, Fig. 4], and the fruitflyDrosophila pseudoobscurapupae [29,
Figs. 5–7, p. 414]. These PRCs looks similar to the smalla version of the radial isochron clock.) It is easy to compute
the PRC for model neurons as well. Mato et al. do this for the Hodgkin–Huxley model and the Connor–Stevens model.
In the former, the PRC both advances and delays while in the latter, the PRC only advances the phase. In cortical
PRCs such as measured by Reyes and Fetz [23,24], we find the following two classes of functions to be a good fit:

∆1(φ) = a
φ(1 − φ)

1 + e−c(φ−b)
(3)

with c ≥ 0,0 < b < 1 and

∆2(φ) = aφ(1 − φ)e−pφ−q(1−φ) (4)

with 0 < p < q. These are plotted in Fig. 3 along with the data from Reyes and Fetz [23]. Parameters for the
fits were chosen using least squares. The former function provides a better fit, however, the latter allows us more
flexibility in varying the shape of the PRC.

2.3. Coupling with PRCs

Suppose that one has computed a PRC. Then how can we use this to analyze the coupling between oscillators.
The easiest way to think about this is to first consider a single oscillator that is periodically driven with a pulsatile
stimulus. Assume that everyP time units, a stimulus of strengtha is given to the system. Then the phase right
beforethe time of thenth stimulus is

θ̂n = θn−1 + P

T
,

whereθn−1 is the phase rightafter the(n − 1)th stimulus. The phase after thenth stimulus is thus

θn = θ̂n + ∆(θ̂n) = θn−1 + P

T
+ ∆

(
θn−1 + P

T

)
,

which gives a map for the phase. Letφ = θ + P/T . Then we get the more standard map:

φn = P

T
+ φn−1 + ∆(φn−1) ≡ P

T
+ F(φn−1). (5)

We callF(φ) = φ + ∆(φ) thephase transition mapand it describes what the new phase is as a function of the
old phase. This class of circle maps has been analyzed by many people. Glass and Mackey [11] provide a good
overview of circle maps. We note here that ifF ′(φ) > 0 then the map is invertible and there is no chaotic behavior.
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Fig. 3. Experimentally measured PRC [23] and two approximations.

Another way to formally describe the periodic driving is to embed the map into a discontinuous differential
equation:

dθ

dt
= 1

T
+ δP (t)∆(θ),

where

δP (t) =
∑
n

δ(t − nP),

andδ(t) is the Dirac-delta function. The solution to this differential equation between thenth and(n+1)th stimulus
is just

θ(t) = θ(nP) + ∆(θ(nP)) + t

T
,

and if we letφn be as defined as the phase right after thenth stimulus,φn = θ(nP) + ∆[θ(nP)], then we get the
map (5). This formal version of the forced map leads us easily to the obvious way of coupling PRCs:

dθj
dt

= 1

Tj

+ C
∑
n,k

δ(t − tnk )∆jk(θj ), (6)

wheretnk is thenth time that thekth oscillator fires,∆jk(θ) the effect on the phase of thej th oscillator by thekth
oscillator firing, andC the overall coupling strength. Note that∆jk = 0 if oscillatork is not connected to oscillatorj .
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Dror et al. and Canavier et al. assume this form of coupling in their series of papers. Hoppensteadt and Izhikevich
derive a similar model from synaptically coupled neurons near a saddle-node bifurcation. Winfree [28] replaces
the Dirac-delta functions with a smooth pulsatile periodic function. The case of all-to-all coupling of the Winfree
model was recently analyzed by Ariaratnam and Strogatz [1]. Ermentrout and Kopell [10] also replace the delta
functions with smooth functions and analyze the resulting systems of equation. They derive the smoothed version
from general neural net equations.

Stoop et al. [26] consider an alternative means of coupling between PRCs which is akin to “diffusive” coupling
and coupled map lattices:

φj (n + 1) = (1 − C)F(φj (n)) + C

m

∑
k

F (φk(n)),

where the sum is over connections andm the number of such connections. A biological interpretation of this form
of coupling was not suggested.

2.4. “Weak” coupling

Before turning to our results on “strong” coupling, we consider a limiting case whenC is small. We assume that
1/Tj = 1 + εωj , whereC = ε � 1 is a small number. We letθj (t) = t + φj (t). Forε small,tnj ≈ n + φj (t) so
we obtain

dφj

dt
= ε


ωj +

∑
k,n

δ(t − n + φk)∆jk(t + φj )


 .

Averaging this over one period leads to

dφj

dt
= ε

(
ωj +

∑
k

∆jk(φj − φk)

)
+ O(ε2). (7)

Phase equations such as this have been analyzed by numerous authors and have been shown to have many different
non-trivial phase-locked solutions [8]. Thus, it should not be surprising that (6) also has a variety of different
complex behaviors. We note that a phase-locked solution to (7) has the form

φj = Ωt + ψ̄j ,

whereψ̄j is a constant andΩ a constant determined from the equations. A sufficient (but not necessary) condition
for stability of this solution is∆′

jk(ψ̄j − ψ̄k) ≤ 0.

2.5. Smooth pulsatile coupling

One other way to approach the instantaneous pulsatile coupling implicit in the definition of the PRC is to study
a “smoothed” version:

dθj
dt

= ωj +
∑
k

P (θk)∆jk(θk),

whereP(θ) is a smooth periodic pulse-like function centered at 0. For example,

P(θ) = Am(1 + cosθ)m,
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whereAm is chosen so that the integral ofP is 1. Asm gets large,P will approach the Dirac-delta function. Winfree
[28] first posed this class of models and recently Ariaratnam and Strogatz [1] analyzed the “all-to-all” coupled
case form = 1 and∆jk(θ) = c sinθ . In this brief section, we give a condition for the existence and stability of
synchronous solutions. We assume the following:

(i) ∆jk(φ) = cjk∆(φ).
(ii) cjk = ckj, ωj = ω,∑

k

cjk = c,

and the matrix,cij is irreducible.
(iii) There is a solution to

φ′ = ω + cP(φ)∆(φ) (8)

satisfyingφ(t + T ) = φ(t) + 2π for some finite positiveT .
The first assumption says that the responses to any perturbation differ only in magnitude. The second

assumption says that the coupling is homogeneous, the oscillators are identical, the coupling is symmetric,
and non-degenerate. The third assumption says the oscillators do not get stuck at fixed points. With these
assumptions, a synchronous solution to

dθj
dt

= ω +
∑
k

cjkP(θk)∆(θj ) (9)

exists,θj (t) = φ(t). This is easily seen by substitution into (9) and using the homogeneity assumption and
assumption (iii).

Suppose in addition, we have the following:
(iv) cjk ≥ 0.

(v) Q ≡
∫ T

0
P(φ(t))∆′(φ(t))dt < 0.

Then, the synchronous solution is asymptotically stable.

Remark. The integralQ is the generalization of the “XZ” loop conditions that Winfree derives for all-to-all coupling
for pulse-coupled oscillators [28].

To prove this, we linearize (9):θj (t) = φ(t) + yj . To the lowest order

dyj
dt

=
∑
k

cjk(P
′(φ(t))∆(φ(t))yj + P(φ(t))∆′(φ(t))yj ).

Recall thatφ satisfies (8) so that if we differentiate this with respect tot we obtain:

dφ′(t)
dt

= (P ′(φ(t))∆(φ(t)) + P(φ(t))∆′(φ(t)))φ′(t).

Sinceφ′(t) is periodic, this means∫ T

0
P ′(φ(t))∆(φ(t)) + P(φ(t))∆′(φ(t))dt = 0
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or

−
∫ T

0
P ′(φ(t))∆(φ(t))dt =

∫ T

0
P(φ(t))∆′(φ(t))dt ≡ Q. (10)

Let �ξ be an eigenvector of the matrixcjk with eigenvalueλ. Sincecjk is non-negative, irreducible, and symmetric, it
has a unique eigenvector with non-negative components. (This is a consequence of the Frobenius–Perron theorem.)
Sincecjk is homogeneous (i.e., its column sums are the same), this eigenvector is the vector of all 1’s and the
eigenvalue isc. Furthermore, sincecjk is non-negative and irreducible, this is the maximal eigenvalue. Thus,c > λ

for all �ξ �= �1. The solutions to the linearized equation are

yj (t) = x(t)[�ξ ]j ,

wherex(t) is a scalar satisfying:

x′(t) = (cP(φ(t))∆′(φ(t)) + λP ′(φ(t))∆(φ(t)))x(t).

Integrating this over a period, we see thatx(t) will decay if and only if

M ≡
∫ T

0
(cP(φ(t))∆′(φ(t)) + λP ′(φ(t))∆(φ(t)))dt < 0.

Using (10), we see that

M = Q(c − λ).

Sincec > λ, then a necessary and sufficient condition for stability of the synchronous state is thatQ < 0 which is
assumption (v). Note that there is a single zero eigenvalue corresponding to the time-translation invariance of the
periodic solution.

We remark that this integral condition can be understood intuitively. Suppose that∆′(φ) is negative near the
origin. (For example, in the radial isochron clock, this is true.) Suppose thatP(φ) is positive and rapidly falls off
to zero away from the origin. Then the integral quantity,Q will be negative as required. We also remark that this
condition is analogous to the condition for the weakly coupled case. Indeed, the “weak interaction” function is

H(φ) = 1

T

∫ T

0
∆(t + φ)P (t)dt.

The condition for stability of the synchronous state isH ′(0) < 0 which is equivalent toQ < 0.

3. Two oscillators

We now consider a pair of mutually coupled PRCs and derive a one-dimensional map. For simplicity we will
assume identical frequencies. We assume that the functionF(x) = x + ∆(x) is invertible (F ′(x) > 0). This has
several important consequences:

1. No stimulus can cause a neuron to fire immediately. The phase can be advanced but never sufficiently to induce
instant firing. This means that ifx < 1 thenF(x) < 1 as well. SinceF(1) = 1 andF is monotone increasing
F(x) < 1 for x < 1.

2. Similarly, invertibility means that the phase of an oscillator can never be brought below 0.

This assumption holds if the coupling is not too strong.
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Fig. 4. Construction of the map,x �→ G(x) for a pair of coupled PRCs.

3.1. Locking

We assume identical frequencies in order to obtain an ordering principle for the oscillators. The pair of oscillators
satisfies the formal differential equation:

dθ1

dt
= 1 +

∑
k

δ(t − tk2)∆(θ1),
dθ2

dt
= 1 +

∑
k

δ(t − tk1)∆(θ2),

wheretk1,2 are the times at which oscillators 1 and 2 fire. Suppose thatθ1 is ahead ofθ2, then invertibility ofF
implies thatθ1 will always be ahead ofθ2 if they have identical frequencies. This is because the firing ofθ1 can never
pushθ2 past 1 nor canθ2 pull θ1 below 0. If the frequencies are different, then it becomes more difficult to describe
a map. Fig. 4 describes the construction of the map. Suppose that at the moment thatθ1 crosses 1,θ2 = x. Then
immediately after firing, the new phase ofθ2 is θ̂2 = F(x). θ1 is reset to 0 andθ2 will then fire att = 1 − F(x) by
which timeθ1 has advanced toy = 1−F(x). θ1 is mapped tôθ1 = F(y) = F(1−F(x)). It takes 1−F(1−F(x))

amount of time forθ1 to again reach 1 completing the map. Thus, the new value ofθ2 is found to be

x → 1 − F(1 − F(x)) = x + ∆(x) − ∆(1 − x − ∆(x)) ≡ G(x). (11)

Fixed points of this map satisfy

0 = ∆(x) − ∆(1 − x − ∆(x)).

If ∆(0) = 0 as we usually assume, thenx = 0 is always a fixed point. That is, there is a synchronous solution.
There can be other fixed points as well; generically at least one interior fixed point. For the maps (2)–(4) there
are two roots: the synchronous root and the anti-synchronous root. The maps arising from both the radial isochron
clock and the integrate-and-fire model also have two fixed points: a synchronous and anti-synchronous root. The
quadratic integrate-and-fire map is degenerate,G(x) = x.

An alternate way of deriving a map is to consider the timing rather than the phases of the oscillators. LetT1 be
the last time that oscillator 1 fired andT2 > T1 be the last time that oscillator 2 fired. LetT ′

j denote the next firing
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time of each oscillator. Then

T ′
1 = 1 + T1 − ∆(T2 − T1), T ′

2 = 1 + T2 − ∆(T ′
1 − T2)

defines the firing time map since both oscillators have a frequency of 1. Lettingφ = T2 − T1 we recover the phase
map.

3.2. Stability of the fixed points of the map

Let x̄ be a fixed point of (11). Stability is found by linearizing aboutx̄ leading to

G′(x̄) = [1 + ∆′(x̄)][1 + ∆′(1 − x̄ − ∆(x̄))].

This is just the product of the derivative of the phase transition map evaluated at the phase of oscillator 1 when 2
fires and vice versa. Since each term is positive from the invertibility ofF(x), this means that the fixed point will be
stable if the product of the terms is less than 1. In particular, the condition for stability of the synchronous solution is

σ = [1 + ∆′(0+)][1 + ∆′(1−)] < 1. (12)

Note that it is important that we take the correct limits for the PRC as often, a PRC does not have a continuous deriva-
tive. We can visually look at the PRC and determine if synchrony will be stable. For example, in the simple map (2)
if a > 0 then∆′(0) = ∆′(1) = −a and thusσ = (1−a)2 < 1 provided thata is less than 2. For the maps illustrated
in Fig. 3,∆′(0+) = a0 > 0 and∆′(1−) = −a1 < 0 so thatσ = 1 + a0 − a1 − a0a1. If aj is not too large, then a
sufficient condition for stability is thata1 > a0 which clearly holds in the maps of Fig. 3. Thus, synchrony is stable.

The antiphase solution is unstable for the maps illustrated in Fig. 3. For the simple sinusoidal map (2), we see that
φ = 1

2 is the anti-phase root and that it is unstable fora > 0 and stable for−2 < a < 0. The synchronous state is sta-
ble and the anti-phase solution unstable for the radial isochron clock ifa > 0 while fora < 0 the situation is reversed.

3.3. All-to-all coupling

While the majority of this paper is devoted to patterns seen with local coupling, we can say a few general things
about the all-to-all coupled case in which every cell is identically connected to every other cell. This is reminiscent of
the case studied by Mirollo and Strogatz [20] for pulse-coupled integrate-and-fire models. They show that all initial
conditions outside a set of measure zero converge to the synchronized state. In order to study all-to-all coupling, we
need to make an important preliminary observation. Suppose (as we have throughout the paper) thatF is monotone
and thus invertible. Then 1≥ F(θ1) ≥ F(θ2) ≥ 0 for all 1 ≥ θ1 ≥ θ2 ≥ 0. Thus, if oscillator 1 is ahead of oscillator
2, then after both receive stimuli, oscillator 1 is still ahead of oscillator 2. Furthermore, neither oscillator can be
brought to firing by the stimulation nor can either oscillator be pushed to 0 sinceF(1) = 1 andF(0) = 0. This
means that if we have an array ofN all-to-all identically coupled oscillators, then the order of their firing is always
preserved. To study the stability of synchrony, we will create a locally defined map after the perturbation away
from synchrony is given. This perturbation will determine a set of firing timeswhich will be preserved. We can now
assume that they are labeled in the order of their firing and from this derive the (N − 1)-dimensional map. The map
is done inN pieces corresponding to the single firing of each of theN oscillators in a cycle. We will go through the
case ofN = 3 oscillators to illustrate how the map is constructed for generalN . We label the oscillatorsθ1, θ2, θ3

and suppose that the firing order is 1–2–3. We startθ1 = 1 and 1> θ2 > θ3 > 0 and follow the evolution as
θ2, θ3 fire and thenθ1 is brought up to firing. We define two variablesx2, x3 which will represent the two oscillators
which are not firingso that initiallyx2 representsθ2 andx3 representsθ3. However, when oscillator 2 fires,x2 will
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represent oscillator 3 andx3 will represent oscillator 1 which will now be the furthest back in phase since it fired
most recently. Once oscillator 2 fires,x2 becomes oscillator 1 andx3 becomes oscillator 2 as oscillator 3 is the next
in line to fire. Once oscillator 3 fires, it goes to the back of the line and waits for oscillator 1 to fire again. We define
three maps:

Ma(x2, x3) = (F (x2), F (x3)), Mb(x2, x3) = (1 − x2 + x3,1 − x2),

and

Mc(x2, x3) = (F (1 − x2 + x3), F (1 − x2)) = Ma(Mb(x2, x3)).

The first map is the initial response of 2 and 3 to 1 firing. The time elapsing until 2 fires is thus 1− x′
2, where

x′
2 = F(x2). At this point oscillator 3 has advanced to 1−x′

2 +x′
3 wherex′

3 = F(x3). This advance without a firing
is mapMb. Now, right after oscillator 2 fires, oscillator 3 has a phaseF(1 − x′

2 + x′
3) and oscillator 1 has a phase

F(1 − x′
2). This explains the form ofMc. We applyMc one more time accounting for oscillator 3 firing. Finally,

we applyMb one more time to bringθ1 up to the threshold for firing. Thus, the map is

(θ2, θ3) → MbMcMcMa(θ2, θ3).

This is defined only in the domain

1 ≥ θ2 ≥ θ3 ≥ 0,

which as we have already noted is an invariant under these maps. The generalization toN > 3 oscillators is immedi-
ate. Synchrony is a solution to this system. Stability is determined by linearizing about the fixed point,(0,0, . . . ,0).
We consider two cases. In the simplest case, we suppose that the PRC is continuously differentiable at the origin.
That is,∆′(0+) = ∆′(1−). This is true for the radial isochron clock and for the PRC of the Hodgkin–Huxley
equations. However, it appears not to be true for the PRCs of cortical neurons and the models (3) and (4). If the PRC
is continuously differentiable thenF ′(0) = F ′(1) ≡ α. However, if the PRC is not continuously differentiable, then
F ′(0) ≡ α0 �= α1 ≡ F ′(1). We will discuss this more difficult case shortly. In the former case, the linearized map
is just

B = ENαN,

where the general form ofE (the linearization ofMb) is

E =




−1 1 0 0 · · · 0

−1 0 1 0 · · · 0
...

−1 0 0 · · · 0 1

−1 0 0 · · · 0 0




.

The (N − 1) × (N − 1) matrix E is just a permuted transpose of a companion matrix so that its characteristic
polynomial is

pE(λ) = λN−1 + λN−2 + · · · + λ + 1,

whose roots are just theN th roots of unity different from 1. These sit exactly on the unit circle so that the roots of
B have magnitudeαN . From this, we conclude that the synchronous fixed point is asymptotically stable if and only
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if α = F ′(0) < 1. “Excitatory coupling” for the Hodgkin–Huxley equations as well as for the radial isochron clock
leads to locally stable synchrony with all-to-all coupling.

What about stability in the second case? Here, we no longer have the simple structure for the linearization.
To see why, consider the synchronous solution(0, . . . ,0). One can see that

Ma(0, . . . ,0) = (1, . . . ,1)

so that linearization ofMbMa leads to the matrix:

A1 = diag(α1, . . . , α1)E.

However, application ofMc to the vector of 1’s leads to

Mc(1, . . . ,1) = (1, . . . ,1,0),

and the linearization is

A2 = diag(α1, . . . , α1, α0)E.

Sinceα0 �= α1 the matrixA2 is not a scalar multiple ofE. We continue in this manner up the chain of maps and
find that at each point, we replace the bottom mostα1 by anα0. We thus must study the spectrum of a matrix
consisting of products ofE and products of diagonal matrices which are not scalar multiples of the identity matrix.
For example, for the caseN = 3 the linearization is

B =
(

−1 1

−1 0

)(
−α1 α1

−α0 0

)(
−α1α0 α1α0

−α1α0 0

)
.

For the casesN = 3,4, the resulting matricesB are upper triangular and the eigenvalues can be explicitly read off
of the diagonals. In the case ofN = 3, the eigenvalues areα2

0α1, α0α
2
1 while forN = 4 they areα3

0α1, α
2
0α

2
1, α0α

3
1.

We show that is a general form for the eigenvalues. Thus, synchrony will be linearly stable if and only if each of
the termsαkα3 is less than 1. That is, we have the following theorem.

Theorem. TheN − 1 eigenvalues ofB are of the form: α3
0α

N−3
1 , where1 ≤ 3 < N . Synchrony is stable for an

N-dimensional all-to-all coupled PRC network if each of these is less than1.

The proof of this theorem is given in Appendix A.
This has an interesting implication. Suppose thatα0 > 1 andα1 < 1 as is the case for the experimentally

computed PRCs. Suppose thatα0α1 < 1 so that a pair stably synchronizes. Sinceα0 > 1, we can find a sufficiently
largek such thatαk

0α1 > 1 so that a network withk + 1 cells coupled in an all-to-all fashion does not have a stable
synchronous solution while any smaller network does have a stable synchronous solution. The critical network size
is thusN = k + 1, wherek is the smallest integer larger than

− logα1

logα0
.

For the cortical PRCs,α0 is very close to 1 so that the network would have to be very large. However, it is easy
to construct a simple PRC for which synchrony is stable for a pair but not for a three oscillator system. Take
∆(θ) = a| sinπθ |/π . Thenα0 = 1 + a andα1 = 1 − a. Synchrony is stable for the pair since the eigenvalue is
α0α1 = 1 − a2. However, for a network of three oscillators, the maximum eigenvalue isα2

0α1 = 1 + a − a2 − a3

which is greater than 1 ifa < 1
2(

√
5 − 1) ≈ 0.618. Thus for small values ofa synchrony is not a stable solution.



204 P. Goel, B. Ermentrout / Physica D 163 (2002) 191–216

Fig. 5. (A) The evolution of the phases for three all-to-all coupled PRCs (left) and the projection into theθ2–θ3 phase-plane. (B) Same as
(A) for four all-to-all PRCs.

A similar bound can be found forN = 4 oscillators:a < a∗ ≈ 0.839 then synchrony is unstable for four oscillators.
We illustrate this point forN = 3,4 oscillators in Fig. 5 . This shows the behavior of the map fora = 0.2 with initial
data close to synchrony. The relative phases move around with longer and longer periods tending to synchrony for
many iterates only to escape and drift around. This is quite similar to the approach of a dynamical system to a
heteroclinic cycle. If we increasea past the critical value, then small perturbations from synchrony remain small
and rapidly converge to the synchronous solution.

4. One-dimensional geometries

We now turn to one-dimensional geometries. The first case to consider is a chain ofN coupled maps with nearest
neighbor coupling:

dθj
dt

= 1 + ∆(θj )[δ(θj−1) + δ(θj+1)] (13)

with the stipulation that the end oscillators receive only one input for the linear chain or, in the case of a ring,N + 1
is identified with 1 andN with 0. Clearly one solution to this equation is the synchronous solution since∆(0) = 0.
(Note that for the integrate-and-fire PRC,∆(0) �= 0 so that a simple linear chain cannot synchronize. Indeed, the
oscillators in the middle advance by an amount 2∆(0), while the ends only advance by an amount∆(0) so syn-
chronization is impossible.) One can ask if synchrony is stable and furthermore if there are other possible solutions.
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The issue of stability remains open. In the case of a ring withN = 3, the network is actually all-to-all coupled and
thus covered by our previous results. However,N > 3 remains an open problem. We conjecture that if the PRC
is continuously differentiable at the origin, and if 0< F ′(0) < 1, synchrony in both a ring and a linear chain is
stable. This is certainly true for weak coupling sinceF ′(0) < 1 implies that∆′(0) < 0 and thus the synchronous
phase-locked state is stable (cf. Section 2.4). Furthermore, this is also consistent with the results for smooth-pulse
coupling (Section 2.5).

4.1. Waves in a ring

In addition to synchrony, there are other possible solutions in a ring. The simplest such solution is a wave in
which the timing interval between the firing of successive oscillators is constant. We now establish conditions for
the existence of such a fixed timing wave by deriving an (N − 1)-dimensional map valid near such a wave. As with
the all-to-all coupled case, that map will advance the oscillator index as well as the phase. Suppose that oscillatorN

has fired and all the remaining oscillators coupled toN (e.g.N − 1 and 1) have also been reset. The next oscillator
to fire will be oscillator 1 since the sequence is assumed to be 1→ 2 → · · · → N . The amount of time that it takes
for oscillator 1 to reach firing is 1− θ1 so that oscillatorj < N will have advanced toθj + 1 − θ1 and oscillator
N will have advanced to 1− θ1. Oscillator 2 and oscillatorN receive inputs from oscillator 1 (since it is nearest
neighbor coupling) thus they both will receive a resetting pulse so that their respective phases areF(1 − θ1 + θ2)

andF(1 − θ1). We are now back to where we started but shifted forward one step. Thus, we obtain the following
(N − 1)-dimensional map:

θ ′
1 = F(1 − θ1 + θ2)

θ ′
2 = 1 − θ1 + θ3

... = ...

θ ′
N−2 = 1 − θ1 + θN−1

θN−1 = F(1 − θ1).

This map gets iteratedN times per wave but the map is the same at each step so that we need only consider one
step for issues such as the existence of a non-trivial fixed point or the stability. We suppose that the time between
successive firings isτ . Thus, we must have 1− θ1 = τ . We can use this to find the fixed points:

θN−1 = F(τ)

θN−2 = τ + F(τ)

θN−3 = 2τ + F(τ)

... = ...

θ2 = (N − 3)τ + F(τ)

1 − τ = F((N − 2)τ + F(τ)).

From this, we see that there will be such a fixed point for the map if and only if

G(τ,N) = F(F(τ) + (N − 2)τ ) + τ = 1.
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Fig. 6. The period as a function of the number of oscillators in the ring for: (A) the cortical neuron PRC; (B) the sine model at different amplitudes
of coupling.

Suppose for the moment that the PRC is small so thatF(x) = x + ε∆(x), whereε is small and positive. Then,
upon expanding inε to order 2 we find

τ = 1

N
− ε

N

[
∆

(
1

N

)
+ ∆

(
1 − 1

N

)]

+ ε2

N2

[(
∆

(
1

N

)
+ ∆

(
1 − 1

N

))(
∆′
(

1

N

)
− ∆

(
1 − 1

N

))
+ N∆

(
1 − 1

N

)
∆′
(

1 − 1

N

)]
.

Thus, the timing difference is roughly the length of an uncoupled cycle divided by the number of oscillators. If the
PRC is anti-symmetric as is the case for the radial isochron clock, then the firing interval is 1/N + O(ε2). Since
it is a simple matter to numerically solveG(τ,N) = 1 we do so in Fig. 6 for the model (3) which fits Reyes data
and for the standard sine model∆(x) = −a sin(2πx)/(2π) for a variety of values ofa. Rather than plotτ , we
instead plotT = Nτ which is the period of a wave. Thus the figures represent a “dispersion” curve for the ring of
coupled PRCs. We point out that the neurally motivated PRC (top panel) has a period that is always less than the
uncoupled period. This is a consequence of the fact that∆ is non-negative and the effect of a pulse is to always
advance the phase. In contrast, the sine model can both advance and delay the phase and this is shown by the fact
that the period is slightly longer for small values ofN .
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Local stability is determined by linearizing about the fixed point. The resulting matrix has the form

BN =




−αN αN 0 0 · · · 0

−1 0 1 0 · · · 0

...
...

...
...

...
...

−1 0 · · · 0 0 1

−α1 0 0 0 · · · 0




,

whereαN = F ′((N − 2)τ + F(τ)) andα1 = F ′(τ ). A direct calculation shows that the characteristic polynomial
of BN is just

P(λ) = λN + αN(λN−1 + · · · + λ) + αNα1.

The “Jury” test [7] is a test similar to the Routh–Hurwitz test which allows us to determine when the roots ofP

lie inside the unit circle. First we note thatαN, α1 are both positive by the monotonicity ofF . Applying this test
to P(λ) shows that the roots lie in the unit circle if and only if: (i)αN < 1; (ii) α1αN < 1; (iii) 1 + αNα1 > αN .
The last condition is trivially satisfied if the first two are satisfied. These conditions are quite intuitively satisfying
and very simple to verify. Condition (ii) says that the slope of the PRC must be negative asφ approaches 1. This
condition is always met in the cortical models when the coupling is excitatory. The second condition is similar to
our condition for stability of synchrony for the two neuron network.

We cannot use the map to look at the stability of synchrony since the map is defined under the strict firing order
assumption. Small perturbations of the wave maintain this ordering. However, the ordering will not be maintained
for the synchronous solution.

Numerical solutions indicate that the waves forN ≤ 10 are unstable for the model (3). For the sine model, (2),
the stability depends ona; for a small enough we expect that all waves withN > 4 will be stable. This is because
whena � 1 the weakly coupled PRCs become the simple phase models:

dφj

dt
= ∆(φj − φj+1) + ∆(φj − φj−1).

The phase differences between the successive oscillators are 1/N and it follows from Ermentrout [8] that a sufficient
condition for stability is that∆′(1/N) < 0. For the sine model this means that cos(2π/N) > 0 so thatN > 4.
However, for larger values ofa bigger rings are required to get a stable pattern.

This result generalizes the result of Canavier et al. and Dror et al. to bi-directional coupling and to arbitrary rings
of oscillators. However, the results here are local stability results whereas the results from the Canavier group are
global.

4.2. Chains of PRCs

If we eliminate the coupling between the 1st and theN th oscillator in the ring, we are left with a one-dimensional
chain of oscillators. If the coupling is bi-directional and symmetric, then one possible solution is synchrony. It
is difficult to create a map for this case due to the fact that there is no reason to believe that ordering will be
maintained as was the case for global coupling. Thus, stability of this state is difficult to prove in general. Even
the case of a three oscillator chain is difficult due to the many possible cases and firing orders. If the PRC is
small enough then we can appeal to results for a weakly coupled chain (Section 2.4) which imply that synchrony
is stable if∆′(0) < 0. However, if the PRC is not continuously differentiable at the origin, as seems to be the
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Fig. 7. Synchronization in a chain of 20 oscillators starting at random phases and using the PRC from Fig. 3.S = 1 is the perfectly synchronized
state.

case for cortical neurons, then even this rather restrictive result cannot be applied. Instead, we must resort to
numerical simulations. Fig. 7 shows the results of a simulation of a chain of 20 nearest neighbor coupled os-
cillators using the PRC from Eq. (3) witha = 1.116, b = 0.775, andc = 10.2 which matches the cortical
PRC shown in Fig. 3. We plot a synchrony index for five different initial conditions in which the phases are
either randomly distributed over [0, 1] or biased toward a traveling wave solution. The synchrony index,S is
defined as

S =
√
A2 + B2, A = 1

20

N∑
j=1

sin 2πθj , B = 1

20

N∑
j=1

cos 2πθj .

If the phases,θj are uniformly dispersed around the circle, thenS = 0 and if they are perfectly synchronized,
S = 1. Kuramoto [19, p. 71] defines a similar index of synchrony for a globally coupled array of weakly coupled
oscillators. Forrings, the random initial data generally converge to a synchronous solution. However, the biased
initial data converge to a traveling wave which has a small synchrony index as the phases are nearly evenly
dispersed. We conjecture that if synchrony is stable for pairwise interactions, then it will be stable for chains
of nearest neighbor connectivity as long as the coupling is not too strong. This is completely consistent with
the results of smooth pulse coupling in Section 2.5. We remark that the behavior of coupled chains is different
from the behavior of chains of phase-difference models such as those analyzed by Kopell and Ermentrout [18]. In
generic phase-difference models, synchrony is not even a solution unless one makes adjustments at the ends. Such
adjustments are unnecessary with PRCs since there is no effect from an input coming at the exact moment a cell fires
(∆(0) = ∆(1) = 0).
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5. Two-dimensional arrays of coupled oscillatory neurons

We consider a network of neural oscillators that are arranged in anN × N square array. Each oscillator is
bi-directionally coupled to its nearest neighbors through a PRC. In this section, we show that for the sine PRC
persistentcircular wavescan be set up in certain size arrays. That is, the firings proceed systematically in a circular
fashion on the array.

5.1. A simulation of the wave

We first simulate the wave, to determine the times that the various neurons fire relative to the neuron in the top
leftmost corner. That is, the time of firing of theθ00 is chosen to be the reference zero time in each period that the
wave goes around. The algorithm is as follows. Each neuron is represented as a variable in a two-dimensional array.
The time this neuron last fired is stored in this variable. Thus,as the wave passes through the array, each cell reflects
either the firing time (with respect toθ00) from the previous cycle of the wave passing through it, or if the wave has
struck it in this cycle, the (current) time it fired. The variables are updated to their most recent value of the firing time,
afterθ00. We start of the simulation with a certain guess at the firing times of the neuron (detailed below), and see
if, as one wave after the other passes through, the system settles into an invariant firing sequence. The wave passing
through is implemented by first allowing theθ00 neuron to fire, then searching the array for that neuronθij that is
closest to firing. All the neurons are updated to reflect their phases just beforeθij fires. Finally, the phase of thisθij

is reset to 0, and simultaneously the phases of its (four) nearest neighbors are affected by the PRC. This is repeated
until θ00 fires again. This leads to a sequence that presumably persists and corresponds to a stable rotating wave.

The initial firing times that we choose for the simulation can be described as follows. The array can be visualized
as being roughly composed of consecutiverings (in analogy with the termcircular wave). Then, if we consider
successive rings, we notice that firings must proceed (counter)clockwise on each ring. To guess at the firing times
of the neurons on a ring, we choose the following. Consider the outermost ring of 4(N − 1) neurons. Since theθ00

neuron fires at the timet = 0, and again at (roughly)t = 1, the other neurons are setup to fireα = 1/4(N −1) apart,
going round on the ring. We can then choose, for a clockwise wave, the firing times for neurons on the outer ring to
beα for θ01, 2α for θ02, and so on. The next inner ring is initialized similarly, withθ11 set to 0, and the other neurons
β = 1/4(N−3) apart going clockwise around. We continue in this manner until all the neurons have been initialized.

5.2. The exact system of equations

We now consider the algebraic conditions necessary for a rotating wave with the sinusoidal PRC. There areN2

unknowns that need to be determined for anN ×N array: the period of the oscillation and theN2 −1 times relative
to the upper left corner. From reflection symmetry only a quarter of these actually need to be found. This leads to
(1

2N)2 unknowns. We derive the equations for phase-locking for the 4× 4 array and then find the roots of this. We
compare them to the simulated times.

5.3. The4 × 4 array

The simplest case to study circular waves in square arrays isN = 4.

5.3.1. Results of the simulation
We considered a PRC∆(φ) = −a sin(2πφ)/(2π) with a value ofa = 0.2. The following table contains

the steady state firing times of the different neurons. (Note that the actual simulations were done on the interval
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0 < φ < 2π for convenience; here we scale the times back to the interval 0< φ < 1.)

0.0/(2π) 0.337/(2π) 1.172/(2π) 1.564/(2π)

5.864/(2π) 0.018/(2π) 1.158/(2π) 1.901/(2π)

5.029/(2π) 4.710/(2π) 3.146/(2π) 2.736/(2π)

4.692/(2π) 4.300/(2π) 3.465/(2π) 3.128/(2π)

τ = 6.256/(2π) ≈ 0.9956 is the period of the wave, i.e. the time thatθ00 fires again. Note that the period is shorter
than the uncoupled period of 1 but only by a very small amount.

A pattern of firing times can be discerned by perusing the table of values from the simulation. The following
table summarizes the various firing times in terms of four ((1

2N)2) unknowns:

0 α τ/4 − β τ/4
τ − β γ τ/4 + γ τ/4 + α

3τ/4 + α 3τ/4 + γ τ/2 + γ τ/2 − β

3τ/4 3τ/4 − β τ/2 + α τ/2

The structure of this table depends crucially on the fact that the PRC we use is odd-symmetric. Like the work of
Paullet and Ermentrout [21], we exploit this symmetry to reduce the number of equations. If∆(−φ) �= −∆(φ)

then there can generally be no such simplification. However, the simulation scheme works for any PRC,∆ such
that|∆′(φ)| < 1 (i.e.F(φ) is invertible).

From this table, we can derive a set of four equations. Consider theθ00 neuron. When it fires at timet = 0,
its phase is 0 at that instant. The phase then continues to increase, until one of its neighbors fires. Based on the
simulations we expect that going around in a wave the neuronθ01 (rather thanθ10) will fire first. At this point the
phase ofθ00 changes fromα toF(α). Once more, the phase ofθ00 continues to grow independently till a timeτ −β,
whenθ10 fires, and disturbs its phase toF(F(α) + (τ − β − α)). With no other firings to affect it, it can continue
to rise until 1, when it fires and must be reset to 0. Thus the following equation must hold:

F(F(α) + (τ − β − α)) + β = 1.

Similarly, we can write three other equations by choosing three other oscillators to get a complete system:

F(F(α) + (τ − β − α)) + β = 1, F (F (F (β) + γ ) + 0.75τ + α − γ ) + β = 1,

F (F (F (0.25τ − β − α) + 0.75τ + β) + γ ) + α − γ = 1,

F (F (F (F (α − γ ) + 0.25τ + γ − α) + 0.5τ) + 0.25τ − β − γ ) + γ + β = 1. (14)

(In Paullet and Ermentrout,τ = 1,α = β, andγ = 0 so that there was a single algebraic equation.)
The system of Eq. (14) can be solved forα, β, γ andτ , using Newton’s method. Furthermore, we can use a

continuation package such as XPPAUT to study how the roots evolve as the magnitudea increases.

5.4. The6 × 6 array

The next case to study isN = 6. Again, we carry out a simulation, and compare the results to a computation
from a system of exact equations. Proceeding as outlined above we obtain the following array of firing times:
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0.0/(2π) 0.125/(2π) 0.447/(2π) 0.960/(2π) 1.345/(2π) 1.563/(2π)

6.036/(2π) 6.162/(2π) 0.287/(2π) 1.046/(2π) 1.471/(2π) 1.688/(2π)

5.651/(2π) 5.737/(2π) 6.188/(2π) 1.497/(2π) 1.851/(2π) 2.011/(2π)

5.138/(2π) 4.978/(2π) 4.624/(2π) 3.061/(2π) 2.609/(2π) 2.523/(2π)

4.816/(2π) 4.598/(2π) 4.173/(2π) 3.414/(2π) 3.034/(2π) 2.909/(2π)

4.690/(2π) 4.473/(2π) 4.087/(2π) 3.575/(2π) 3.252/(2π) 3.127/(2π)

As the above table shows, this is a wave circling on a six-dimensional array. The wave is stable and (locally) attracting.
Fig. 8 shows a plot of these relative phases. The outermost ring of 20 oscillators looks like a traveling wave that covers
one full cycle as the perimeter is traversed. Similarly the middle ring of 12 oscillators is also a traveling wave. The
inner ring of four oscillators consists of cells one quarter of a cycle apart. Thus, these apparently stable patterns look
like nested rings of coupled maps, nearly synchronized along the diagonals. We point out that the patterns here are the
direct analogs of those found by Paullet and Ermentrout [21] in arrays of weakly coupled oscillators. The pattern of
phases in two dimensions is like a pinwheel such as seen in the analysis of the Ginzberg–Landau equation [13,14,22]:

zt = z(1 + iω − zz̄) + ∇2z.

In Fig. 9, we show the period of the rotating wave as a function of the strength of the coupling,a for the four- and
six-dimensional square arrays. We note that this is not monotonic.

Fig. 8. The relative phases for the 6× 6 array in the sine model. Lines denote the angle relative to the upper left corner. Outer, middle, and inner
“rings” are different gray scales.
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Fig. 9. The period as a function of the strength of coupling in a square array for the sine model.

5.5. Larger two-dimensional arrays

We have extended our simulations to arbitrary sized arrays. Simulations show similar waves. The analyses based
on writing an analytical set of equations grows increasing difficult to implement, however. We note that the small
arrays of odd-dimension (e.g. 5× 5) seem to have only the synchronous solution (at least for the initial conditions
implemented in above). However, preliminary results on large arrays show that the dependence on the evenness of
the dimension is an artifact of small dimensionality. We expect these circular waves exist in all evenN -dimensional
(N ≥ 4) arrays and sufficiently large odd-dimensioned arrays. A general existence is still an open question as is the
rigorous determination of stability.

6. Discussion

We have generally examined a number of networks of coupled PRCs. Under certain assumptions (i.e. a fixed
firing sequence) it is possible to reduce these to discrete maps. However, the existence of such a map depends
on maintaining this fixed firing sequence. Thus, the issue of heterogeneity in uncoupled frequency becomes an
important one for the all-to-all networks. For then, near synchrony, it is possible for the order of firing to be
changed. On the other hand, with heterogeneity, we do not expect exactly synchronous solutions. Instead, we
expect that the oscillators will fire in order of their uncoupled frequency. Small perturbations will not destroy
this order so that our techniques are probably applicable. Heterogeneity in coupling is significantly more difficult.
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The development of a theory for general all-to-all systems remains to be found. For the ring models where there
is a fixed firing sequence bounded away from synchrony, small differences in the oscillators will not affect the
map as the sequence will be maintained. The maps for linear chains and the two-dimensional systems remain to be
described. We note that it is probably possible (albeit tedious) to prove the synchrony of the rotating waves in the
two-dimensional lattices. The idea is to exploit the fact that there is a fixed firing sequence. This allows us to define a
local linearization of the map and from this determine whether synchrony is stable. All numerical simulations seem
to point to stability at least for the simple sinusoidal PRC. Ideally, a general theorem analogous to that in [8] could be
proven.

Canavier et al. and Dror et al. have concentrated their efforts on computing and analyzing the PRCs for cou-
pled “burst-like” neurons. This is in some ways a much more difficult problem than that which we have derived
here. In bursting neurons the effect of one oscillator on the other can be prolonged. Furthermore, the length of
time of the effect can depend on the inputs to that oscillator. Effects of such a large perturbation can affect the
next cycle as well. Thus, the maps that one derives from coupled bursters are much more challenging to an-
alyze. In the present paper, the interactions are presumed to be very short-lasting compared to the period of
the oscillators. For example, cortical excitatory synapses typically last only 2–5 ms while the period of oscilla-
tions varies from 25 to 100 ms. This allows us to ignore the possibility of inputs “bleeding” over into the next
cycle.
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Appendix A

Proof of theorem. We define the followingN diagonal matrices,dk, k = 1, . . . , (N − 1), as follows:d0 is the
(N − 1)-dimensional diagonal matrix with all its (non-zero) elementsα0’s, d1 with α1’s, and the otherdi ’s having
bothα0’s andα1’s. d2 = D(α1, α1, . . . , α1, α0), d3 = D(α1, α1, . . . , α0, α0), and so on withdi having as its last
(i − 1) elementsα0 (and the othersα1), whereD stands for the(N − 1) × (N − 1) diagonal matrix. Also, let

E =




−1 1 0 0 · · ·

−1 0 1 0 · · ·

−1 0 0 1

...
. . .

−1 0 0




.

If B = EDn−1, . . . ,ED1ED0, then the eigenvalues ofB are of the formα
p

0α
N−p

1 with 1 ≤ p ≤ N − 1.

Proof. Let us consider the productB above. We claim that the following matrixS is a similarity transformation that
diagonalizesB with the required eigenvalues on the diagonal.S is the(N − 1) × (N − 1) matrix with all elements
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on the diagonal, and above it, unity, and zero otherwise. That is,

S =




1 · · · 1

0 1

...
. . .

. . .
...

...
. . . 1

0 · · · · · · 0 1




with an inverse

S−1 =




1 −1 0 · · · 0

0 1
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . . 1 −1

0 · · · · · · 0 1




.

Thus we need to show thatS−1BSis a diagonal matrix. We proceed as follows: it is a simple matter to evaluate the
productED1ED0S which is of the following general form:

ED1ED0S =




0 −α0α1 0 · · · 0

. . .
. . .

...

...
...

. . . 0

0 −α0α1 · · · −α0α1

α0α1 0 · · · 0




.

Next, we make the following claim: every matrix product up to thekth factorEDk, . . . ,ED1ED0S is of the general
form

Pk = EDk, . . . ,ED1ED0S =




0 · · · 0 −α0α
k
1 0 · · · 0

...
...

. . .
. . .

...

...
. . . 0

0 · · · 0 −α0α
k
1 · · · −α0α

k
1

αk
0α1 αk−1

0 α2
1 · · · α2

0α
k−1
1 α0α

k
1 0 · · · · · · 0

0 αk−1
0 α2

1

...
...

...
...

. . .

...
. . . α2

0α
k−1
1

...
...

...

0 · · · 0 α0α
k
1 0 · · · · · · 0




.
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We remark the following characteristics of this matrix: the(N − 1)-dimensional matrix above is made up of two
submatrices of dimensionsk andl with l = (N − 1)− k. Let us call the ‘lower triangular’ submatrix occupying the
upper rightl × l corner ofPk, theL (sub)matrix, and the ‘upper triangular’ submatrix occupying the bottom left
k × k corner ofPk, theK (sub)matrix. (We note all other elements ofPk are identically zero.) All elements ofL are
identical, and equal to−α0α

k
1. All elements in theith column ofK are identical, and equal toαk+1−i

0 αi
1. We next

consider the product ofPk with the next (premultiplying) factorPk+1 = EDk+1Pk in S−1BS. If our original claim
is to be true, the matrixPk+1 must be of the same general form that we described forPk. Except that forPk+1, its
K matrix is of dimension(k + 1) (andL is one dimension smaller). We verify this is indeed the case. We note that
Dk+1 is a diagonal matrix with the lastk + 1 elementsα0 (the firstN − 1− k elementsα1). Hence, we observe that
the productDk+1Pk is simply obtained by multiplying the elements ofL in Pk byα1, and those ofK byα0! We also
notice that under (pre)multiplication byE, everyj th column(r1, r2, . . . , rN−2, rN−1)

T in the multiplicand matrix
is simply permuted to(−r1 + r2,−r1+r3, . . . ,−r1 + rN−2,−r1)

T. The productEDk+1Pk is then of the desired
form. Proceeding to writeBS≡ PN−1 we obtain the upper triangular matrix:

BS=




αN−1
0 α1 αN−2

0 α2
1 · · · α2

0α
N−2
1 α0α

N−1
1

0 αN−2
0 α2

1

...
...

...
. . .

. . . α2
0α

N−2
1

...

0 · · · 0 α0α
N−1
1




.

It can easily be verified that premultiplying byS−1 (given above) then sets all the elements besides those on the
diagonal to zero. Hence the eigenvalues ofB follow as proposed. �
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